Ноутбуки   
   Софт   
   Компьютеры   
   Компьютерные фирмы   
  Меню сайта

BIOS

SSD-накопители

Акустика для ПК

Видеокарты

Видеокарты - История

Джойстики, клавиатуры и мыши

Дигитайзеры

Жесткие диски

Жесткие диски - история

Звуковые карты

Именитые люди компьютерной индустрии

История компьютеров

Карманные компьютеры

Компьютер десктоп - готовая сборка

Компьютерные фирмы

Компьютеры в теории и практике

Копировальные аппараты

Корпуса, вентиляторы, блоки питания

Маршрутизаторы, коммутаторы, хабы

Материнские платы

Модемы

Модули памяти

Мониторы

Мониторы и видеокарты - история

Новости

Ноутбуки и субноутбуки

Оборудование беспроводной связи, bluetooth, wi-fi

Оптические накопители CD, DVD, Blueray

Оргтехника

Память - история

Плоттеры

Принтеры

Процессоры

Процессоры - история

Сетевые карты

Сетевые фильтры, ИБП

Сети

Сканеры

Сменные жесткие диски

Советские ПК

ТВ-тюнеры

Типы компьютеров

Устройства архивации данных и стримеры

Факс

Флоппи-дисководы

Флэшки и всяко-разно

Шины и чипсеты - история




Главная страница Прайс-лист Интернет-магазин

Современное поколение выбирает Intel Core
В Intel делают особую ставку на микроархитектуру Core, поскольку в самое ближайшее время на неё перейдут не только PC-совместимые настольные ПК и ноутбуки, но и компьютеры Apple, и даже мощные серверы, рассчитанные на операционную систему следующего поколения Windows Vista. Неслучайно при разработке этой универсальной архитектуры ставились задачи максимального увеличения производительности при максимальном снижении энергопотребления - эти требования сегодня предъявляются не только к ноутбукам, но и к настольным машинам, и к серверам.

По формальным признакам Core ближе всего к архитектуре мобильных Pentium M (Banias), однако при этом целый ряд технологий позаимствован и из Pentium 4. В каком-то смысле, перефразируя Ленина, Core можно охарактеризовать как "шаг назад, два шага вперёд": за основу новой архитектуры, как, впрочем, и архитектуры Pentium M, была взята микроархитектура P6, которая за шесть лет забытья не только не потеряла своей актуальности, но и доказала свою перспективность. Разумеется, Core - далеко не механическая копия P6; скорее - это эволюционное развитие отвергнутой некогда архитектуры.

Как известно, разработкой Core (как и Pentium M) занималось израильское отделение Intel, и уже с самого начала работы перед инженерами была поставлена цель: ориентироваться на многоядерные микросхемы. При этом важно было добиться существенного снижения энергопотребления без ущерба для производительности. К счастью, проблемы с размещением многоядерных процессоров в пределах печатных плат привычных размеров не возникало: переход на более тонкие технологические процессы упрощает задачу размещения на одном кристалле нескольких ядер, поскольку, несмотря на рост числа транзисторов, сами эти транзисторы становятся всё меньше и меньше.

Кстати, выпуск многоядерных процессоров обеспечит дальнейшее процветание культа "закона Мура", говорящего о ежегодном удвоении числа транзисторов в микропроцессорах. Всё дело в масштабируемости, которой характеризуется архитектура Core. Если в Pentium 4 производительность можно было повышать, прежде всего, путём увеличения тактовой частоты, то в случае с Core гораздо проще добавить дополнительные ядра, а потом уже - проводить периодические повышения тактовые частот.

Сегодня всё больше микропроцессоров отходят от схемы внеочередного исполнения команд (OOOE) в пользу поочерёдного, появляется всё больше моделей с архитектурой VLIW (с очень длинными инструкциями, предусматривающих несколько параллельно выполняющихся операций), которым требуется многопоточность и оптимизированные компиляторы. Тем не менее, разработчики Core уделили особое внимание именно схеме OOOE, при которой обеспечивается стопроцентно аппаратная оптимизация выполняемого кода и потоков на уровне кристалла. Инженеры Intel взяли все прекрасно себя зарекомендовавшие элементы современных процессоров и объединили их, одновременно обеспечив расширенные вычислительные ресурсы.

Разумеется, существуют ограничения на число параллельно выполняемых инструкций, поэтому, чем больше вычислительные ресурсы, тем больше доступных для исполнения тактов могут остаться невостребованными из-за ограничений в параллелизме на уровне команд (ILP). Нерациональное использование больших ресурсов возможно и из-за латентности памяти, снижающей общую скорость работы системы.

В микроархитектуре Core предусмотрены целенаправленные решения именно этих двух проблем - ограничений в параллелизме инструкций и латентности памяти, - призванные обеспечить максимальную загрузку ядра. В интерфейсном блоке применяются технология Micro-ops fusion, при которой несколько инструкций после декодирования объединяются и отправляются для обработки в конвейер, и технология Macro-fusion, при которой ещё до декодирования несколько команд "сливаются" вместе и обрабатываются как единая инструкция. Кроме того, в интерфейсном блоке имеется модуль предсказаний переходов-ветвлений (BPU), ускоряющий обработку инструкций до их передачи на исполнение. Расширенная шина позволяет большему числу инструкций передаваться на исполнительные блоки за каждый такт. Кроме того, в архитектуре Core было ликвидировано известное "узкое место" блока SSE, присутствовавшее в предыдущих микроархитектурах, что обеспечивает заметно более высокую производительность новых чипов в векторных вычислениях по сравнению с предшественниками.

Одной из характерных особенностей архитектуры P6 была структура портов запуска (issue port), которые в Intel называют "dispatch ports", т.е. "порты диспетчеризации". Эта структура сохранена и в микроархитектуре Core, однако существуют и важные различия в портах запуска и буфере ("станции") резервирования (reservation station или RS) двух этих архитектур.

Чтобы понять происхождение этой структуры портов запуска, стоит обратиться к структурной схеме процессора Pentium Pro - первого чипа на базе архитектуры P6. Два порта из пяти отведены арифметике, а три оставшихся - отвечают за доступ к памяти. Буфер резервирования ядра P6 способен передавать на исполнительные блоки по одной инструкции через каждый порт за один такт, то есть, всего до пяти инструкций за такт.

С развитием архитектуры P6 в процессорах Pentium II и Pentium III дорабатывалось и ядро: были добавлены исполнительные блоки для целочисленных векторных вычислений и векторных расчётов с плавающей запятой. Эти блоки были добавлены на два арифметических порта, что привело к их некоторой перегруженности. Именно из-за этого возникло описанное выше "узкое место", из-за которого возможно снижение производительности векторных вычислений в условиях недостаточной пропускной способности портов. Аналогичной архитектурой обладает и процессор Pentium M на ядре Banias.

2008 год - процессоры AMD, AMD и еще раз AMD

AMD Duron

AMD K7 Athlon

AMD выпускает обновлённый процессор Phenom X3

Athlon 64 Socket 939 для начинающих

Crusoe

Dual core это новый Pentium

Intel CELERON D или новые возможности бюджетных компьютеров

Intel Core 2 шагает по планете, Если выбирать процессор - то Core 2

Intel демонстрирует клоны Eee PC на процессорах Atom

Intel дёшево продаст Atom

Intel намерена заполнить рынок дешёвыми процессорами - новые Celeron и Core 2 Duo по небывало низким ценам, 2008 год

Intel установила цену на процессор Atom N270

Pentium 4

Pentium E2000 приходит на смену Pentium D

Pentium возвращается, Обзор процессоров Intel Pentium dual-core серии E2100

Апгрейдить процессор или нет, Изучаем зависимость FPS от мощности процессора

Завтра произойдет знаковое событие в мировой IT-индустрии - начнутся продажи процессоров Intel Penryn

Замена процессора на процессор Overdrive

Как выбрать настоящий процессор для вашего ПК - советы

Микропроцессор - немного теории и истории

Обзор процессора Intel Core 2 Duo E6320

Обратите внимание на кэш-память процессора

Оптимизатор работы Dual-Core процессоров AMD

Процессоры AMD Phenom

Процессоры C7-M обеспечат VIA красивый возврат на рынок бюджетных ПК

Процессоры Intel Atom на самом деле стоят в 5 раз дешевле

Процессоры для модернизации, технология Overdrive

Процессоры компании AMD

Процессоры компании Intel

Результаты тестирования Core 2 Duo процессоров - мощь поражает воображение

Современное поколение выбирает Intel Core

Сравнение новейших процессоров Intel Corel 2 Duo и AMD Athlon 64 X2

Сравниваем производительность Celeron D и классического Pentium

Технология изготовления микропроцессоров




Немного рекламы:


















































































Rambler's Top100